
Addressing the Fundamental Tension of PCGML with
Discriminative Learning

Isaac Karth
University of California Santa Cruz
Department of Computational Media

ikarth@ucsc.edu

Adam M. Smith
University of California Santa Cruz
Department of Computational Media

amsmith@ucsc.edu

ABSTRACT
Procedural content generation via machine learning (PCGML) is
typically framed as the task of fitting a generative model to full-
scale examples of a desired content distribution. This approach
presents a fundamental tension: the more design effort expended
to produce detailed training examples for shaping a generator, the
lower the return on investment from applying PCGML in the first
place. In response, we propose the use of discriminative models,
which capture the validity of a design rather the distribution of
the content, trained on positive and negative example design frag-
ments. Through a modest modification of WaveFunctionCollapse,
a commercially-adopted PCG approach that we characterize as us-
ing elementary machine learning, we demonstrate a new mode
of control for learning-based generators. We demonstrate how an
artist might craft a focused set of additional positive and negative
design fragments by critique of the generator’s previous outputs.
This interaction mode bridges PCGML with mixed-initiative design
assistance tools by working with a machine to define a space of
valid designs rather than just one new design.

CCS CONCEPTS
• Computing methodologies → Machine learning approaches;
Machine learning; •Applied computing→Media arts; •Human-
centered computing → Interaction paradigms.

KEYWORDS
machine learning, mixed-initiative interface, design tools, con-
straint solving, procedural content generation, pgcml, procedural
content generation machine learning

ACM Reference Format:
Isaac Karth and Adam M. Smith. 2019. Addressing the Fundamental Tension
of PCGML with Discriminative Learning. In The Fourteenth International
Conference on the Foundations of Digital Games (FDG ’19), August 26–30,
2019, San Luis Obispo, CA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3337722.3341845

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341845

1 INTRODUCTION
Procedural Content Generation via Machine Learning (PCGML) is
the recent term for the strategy of controlling content generators
using examples [33]. Existing PCGML approaches usually train their
statistical models based on pre-existing artist-provided samples of
the desired content. However, there is a fundamental tension here:
machine learning often works better with more training data, but
the effort to produce enough high-quality training data is frequently
costly enough that the artists might be better off just making the
final content themselves.

Rather than attempting to train a generative statistical model
(capturing the distribution of desired content), we focus on applying
discriminative learning. In discriminative learning, the model learns
to judge whether a candidate content artifact would be valid or
desirable independent of the process used to generate it. Pairing a
discriminative model with a pre-existing content generator that can
accept a validity constraint, we realize example-driven generation
that can be influenced by both positive and negative example design
fragments. We examine this idea inside of an already-commercially-
adopted example-based generation system, WaveFunctionCollapse
(WFC) [14].1 This approach begins to address the fundamental ten-
sion in PCGML while also opening connections to mixed-initiative
design tools, the source of the design fragments.

Mixed-initiative content generation tools [15] are usually de-
signed around the idea of the artist having a conversation with
the tool about one specific design across many alterations, with
the goal of creating one high-quality design. We propose to adapt
this conversational teaching model for application in PCGML sys-
tems. While still having conversations with the tool about specific
designs, the conversations are leveraged to talk about the general
shape of the design space (rather than one specific output [9]). The
artist trains the overall generative system to the point where it will
be trusted to follow that style in the future, when the system can be
run non-interactively. Instead of an individual artifact, the goal is
define a space of desirable artifacts from which the generator may
sample.

This paper illuminates the implicit use of machine learning in
WFC, explains how discriminative learning may be integrated, and
presents a detailed worked example of the conversational teaching
model. We refer to the primary user as an artist to emphasize the
primarily visual interface. It should be understood that the process
of creating the input image can involve both design skills and
programming reasoning: the artist is specifying both an aesthetic
goal and a complex system of constraints to achieve that goal.

1https://github.com/mxgmn/WaveFunctionCollapse

https://doi.org/10.1145/3337722.3341845
https://doi.org/10.1145/3337722.3341845
https://doi.org/10.1145/3337722.3341845
https://github.com/mxgmn/WaveFunctionCollapse

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Isaac Karth and Adam M. Smith

2 BACKGROUND
In this section, we review WFC as an example-driven generator,
characterize PCGML work to date as operating on only positive
examples, and review the conversational interaction model used in
mixed-initiative design tools.

2.1 WaveFunctionCollapse
WaveFunctionCollapse is a content generation algorithm devised
by independent game developer Maxim Gumin. In contrast with
generators presented in technical games research venues, WFC
has seen surprisingly quick adoption within the technical artist
community. Particularly notable is that WFC can be considered an
instance of PCGML, as we illustrate in Sec. 3.

The Viking invasion game Bad North [31] uses Oskar Stålberg’s
WFC implementation for generating island maps.2 Caves of Qud [7],
a roguelike that is currently in Early Access on Steam, uses WFC as
one of its map generation techniques. The Caves of Qud developers
have closely followed the ongoing development of the algorithm,
incorporating its recent improvements.3 In particular, Caves of
Qud’s implementation of the improved “fast WFC” enables it to
use a higher N for its N × N patterns, which potentially allows the
developers to express more complex structures.4

WFC is an instance of content generation using constraint solv-
ing techniques [14]. WFC analyzes an input image and expresses
a weighted constraint satisfaction problem based on these local
similarity properties. There are many alternative constraint solving
systems that can be substituted for Gumin’s original observe-and-
propagate cycle, including our own declarative implementations
with the answer-set solver Clingo [6] and the recent “fast WFC”
implementation by Mathieu Fehr and Nathanaël Courant [4].

In this paper, we seek to extend the ideas of WFC while keeping
them compatible with the existing implementations. One of the
more unique aspects of WFC is that it is an example-based gen-
erator that can generalize from a single, small example image. In
Sec. 5 we show that while more than one example is needed to
appropriately sculpt the design space, the additional examples can
be even smaller than the original and can be created in response to
generator behavior rather than collected in advance.

2.2 PCGML
Summerville et al. define Procedural Content Generation via Ma-
chine Learning (PCGML) as the “generation of game content by
models that have been trained on existing game content [empha-
sis added]” [33]. In contrast with search-based and solver-based
approaches which presume the user will provide an evaluation pro-
cedure or logical definition of appropriateness, PCGML uses a more
artist-friendly framing that assumes concrete example artifacts as

2As discussed in e.g. @OskSta: “The generation algorithm is a spinoff of the Wave
Function Collapse algorithm. It’s quite content agnostic. I have a bunch of tweets
about it if you scroll down my media tweets” https://twitter.com/OskSta/status/
931247511053979648
3@unormal: “Got Qud’s new 20x faster WFC implementation down to about 50mb
in-memory static overhead on init with 0 allocation for all future runs (unless the size
of the gen output gets bigger, but Qud’s doesn’t), so no GC churn. (cc @ExUtumno)”
https://twitter.com/unormal/status/984713110257852416
4@unormal, 2:05 AM - 13 Apr 2018: “20x faster also makes higher orders of N practical,
which enables larger scale structures to pop out of wfc.” https://twitter.com/unormal/
status/984719207156862976

the primary inputs. PCGML techniques may well apply construc-
tive, search, or solver-based techniques internally after interpreting
training examples.

Machine learning needs training data, and one significant source
of data for PCGML research is the VideoGame Level Corpus (VGLC),
which is a public dataset of game levels [35]. The VGLC was as-
sembled to provide corpora for level generation research, similar
to the assembled corpora in other fields such as Natural Language
Processing. In contrast with datasets of game level appearance such
as VGMaps,5 content in the VGLC is annotated at a level suitable
for constructing new, playable level designs (not just pictures of
level designs).

The VGLC provides a valuable set of data sourced from iconic
levels for culturally-impactful games (e.g. Super Mario Bros and
The Legend of Zelda). It has been used for PCG research using
autoencoders [13], generative adversarial networks (GANs) [36],
long short-termmemories (LSTMs) [32], multi-dimensional Markov
chains [27, Sec. 3.3.1], and automated game design learning [20].

Some attempted solutions involve leveraging existing data. Snod-
grass and Ontañon [29] train generative models but address the
problem of small training data via transfer learning: training on
data from related domains (level designs for other videogames).
Sarkar and Cooper [24] similarly use data from adjacent domains
to create novel designs via blending. However, Summerville et al.
identify a “recurring problem of small datasets” [33]: most data only
applies to a single game, and even with the efforts of the VGLC
the amount of data available is small, particularly when compared
to the more wildly successful machine learning projects. This is
further complicated by our desire to produce useful content for
novel games (for which no pre-existing data is available). Hence
the fundamental tension in PCGML: asking an artist (or a team of
artists) to produce quality training data at machine-learning scale
could be much less efficient than just having the artists make the
required content themselves.

Compounding this problem, a study by Snodgrass et al. [30]
showed that the expressive volume of current PCGML systems did
not expand much as the amount of training data increased. This
suggests that the generative learning approach taken by these sys-
tems may not ever provide the required level of artist control. While
this situation might be relieved by using higher-capacity models,
the problem of the effort to produce the training data remains.

PCGML should be compared with other forms of example-based
generation. Example-based generation long predates the recent
deep learning approaches, particularly for texture synthesis. To
take one early example, David Garber’s 1981 dissertation proposed
a two-dimensional, Markov chain, pixel-by-pixel texture synthe-
sis approach [5]. Separate from Garber,6 Alexei Efros and Thomas
Leung contributed a two-dimensional, Markov-chain inspired syn-
thesis method: as the synthesized image is placed pixel-by-pixel,
the algorithm samples from similar local windows in the sample
image and randomly chooses one, using the window’s center pixel
as the new value [3]. AlthoughWFC-inventor Gumin experimented
with continuous color-space techniques descending from these tra-
ditions, his use of discrete texture synthesis in WFC is directly

5http://vgmaps.com/
6Efros and Leung later discovered Garber’s previous work [2].

https://twitter.com/OskSta/status/931247511053979648
https://twitter.com/OskSta/status/931247511053979648
https://twitter.com/unormal/status/984713110257852416
https://twitter.com/unormal/status/984719207156862976
https://twitter.com/unormal/status/984719207156862976
http://vgmaps.com/

Addressing the Fundamental Tension of PCGML with Discriminative Learning FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

inspired by Paul Merrell’s discrete model synthesis and Paul Harri-
son’s declarative texture synthesis [8]. Harrison’s declarative tex-
ture synthesis exchanges the step-by-step procedure used in earlier
texture synthesis methods for a declarative texture synthesis ap-
proach, patterned after declarative programming languages [11,
Chap. 7]. Merrell’s discrete 3D geometric model synthesis uses a
catalog of possible assignments and expresses the synthesis as a
constraint satisfaction problem [18]. Unlike later PCGML work,
these example-based generation approaches only need a small num-
ber of examples, often just one. However, each of these approaches
use only positive examples without any negative examples.

The strategy of avoiding directly learning a generative model
explored in this paper is similar to the conceptual move in Genera-
tive Adversarial Networks (GANs). Rather than a training a directly
generative model, GANs co-train distinct generator and discrim-
inator models. GANs have been used for PCGML, for example in
MarioGAN [37], which uses unsupervised learning trained on levels
from the Video Game Level Corpus (VGLC) [34] to generate levels
based on the structure of Super Mario Bros.

Our work also uses example data to influence a distinct gener-
ator and discriminator, but these models are not represented by
differentiable functions: they are instead represented by systems of
constraints. Through a generate-and-test approach, learned validity
constraints can be layered onto existing generative methods. For
WFC, in particular, the validity constraints can be integrated into
the core algorithm itself (a form of constraint solving).

Related to our approach, Guzdial et al. consider a use for dis-
criminative learning in PCGML [10]. Rather than training a pattern-
validity classifier (as in our work), they train a design pattern label
classifier with labels such as "intro" and "staircase". While these
labels do not reshape the space of (Mario level) designs the system
will output, they allow the generator to annotate its outputs in
designer-relevant terms.

2.3 Mixed-Initiative Design Tools
Several mixed-initiative design tools have integrated PCG systems.
Their interaction pattern can be generalized as an iterative cycle
where the generator produces a design and the artist responds
by making a choice that contradicts the generator’s last output.
When the details of a design are under-constrained, most mixed-
initiative design tools will allow the artist to re-sample alternative
completions.

Tanagra is a platformer level design tool that uses reactive plan-
ning and constraint solving to ensure playability while providing
rapid feedback to facilitate artist iteration [26]. Additionally, Tana-
gra maintains a higher-order understanding of the beats that shape
the level’s pacing, allowing the artist to directly specify the pacing
and see the indirect result on the shape of the level being built.

The SketchaWorld modeling tool introduces a declarative “pro-
cedural sketching” approach “in order to enable designers of vir-
tual worlds to concentrate on stating what they want to create,
instead of describing how they should model it” [25]. The artist
using SketchaWorld focuses on sketching high-level constructs
with instant feedback about the effect the changes have on the
virtual world being constructed. At the end of interaction, just one
highly-detailed world results.

Similarly, artists interact with Sentient Sketchbook via map
sketches, with the generator’s results evaluated by metrics such as
playability. As part of the interactive conversation with the artist,
it also presents evolved map suggestions to the user, generated via
novelty search [16, 17]. Although novelty search could be used to
generate variations on the artist’s favored design, it is not assumed
that all of these variations would be considered safe for use. Tools
based on interactive evolution do not learn a reusable content va-
lidity function nor do they allow the artist to credit or blame a
specific sub-structure of a content sample as the source of their
fitness feedback. In Sec. 4, we demonstrate an interactive system
that can do both of these.

As these examples demonstrate, mixed-initiative tools facilitate
an interaction pattern where the artist sees a complete design pro-
duced by a generator and responds by providing feedback on it,
which influences the next system-provided design. This two-way
conversation enables the artist to make complex decisions about
the desired outcome without requiring them to directly master the
technical domain knowledge that drives the implementation of the
generator. The above examples demonstrate the promising poten-
tial of design tools that embrace this mode of control. However,
they tend to focus on using generation to assist in creating specific,
individual artifacts rather than the PCGML approach of modeling a
design space or a statistical distribution over the space of possible
content.

Despite the natural relationship between artist-supplied content
and the ability of machine learning techniques to reflect on that
content and expand it, PCGML-style generators that learn during
mixed-initiative interaction have not been explored beyond the
recent Morai-Maker-Engine [9]. In 2019, this discussion can be
framed in terms of human-centered machine learning [23].7

3 CHARACTERIZINGWFC AS PCGML
Snodgrass describes WaveFunctionCollapse as “an example of a
machine learning-based PCG approach that does not require a deep
understanding of how the algorithm functions in order to be used
effectively” [27, Sec. 2.8]. This section describes what and howWFC
learns in a generalized vocabulary, which we introduce in this paper,
that opens up space for exploring alternative learning strategies.

Rather than being a single monolithic input-to-output-mapping
function, WaveFunctionCollapse is a pipeline of multiple stages.
While most prior discussion has emphasized the constraint-solving
stage, the pattern learning steps that precede it are equally impor-
tant. It starts with an analysis of an image to a vocabulary of valid
adjacencies between patterns. In the second phase, the results of the
analysis are used as constraints in a generation process identifiable
as constraint solving [14].

In this section, we describe how the pattern learning steps are an
instance of machine learning. In particular, we show that this phase
learns three functions: which pattern is present at each location
(the pattern classifier); if the pattern adjacency pairing is within
the artist’s preferred style (the adjacency validity); and how a loca-
tion in the output should be rendered (the pattern renderer) given
the the constraint-solving generator’s choice of pattern placement

7Such as the focus of the Human-Centered Machine Learning Perspectives Workshop
https://gonzoramos.github.io/hcmlperspectives/

https://gonzoramos.github.io/hcmlperspectives/

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Isaac Karth and Adam M. Smith

Tiles

Patterns

Adjacency

Solver

Render

Input

Output

f()
pattern
classifier

g()
pattern
renderer

input
(tiles)

adjacency
validity

(learned
 ad

jacencies)

output

solver

Figure 1: WaveFunctionCollapse pipeline. The left column
shows the pipeline steps. The right column indicates how
the stepsmatch the functions learned frompattern analysis.

assignments. Fig. 1 illustrates the relationship between these three
functions.

3.1 Tiles
Conventionally, the space WFC operates on is a rectangular grid.
This gives us an easy way to define the nodes and adjacency edges:
the nodes are each intersection on the Go board, and the edges are
the lines between them. However, WFC can work on any graph
for which a well-defined adjacency function can be specified. For

example, Stålberg’s experiments with triangular meshes.8 These
can be non-spatial: to create a looping animation Matt Rix added
a time edge.9 Similarly, Martin O’Leary’s poetry generator10 uses
non-neighbor edges for rhyming patterns and scansion.

Multi-node tiles are also possible: one of the Bad North [31]
innovations was to include larger elements as possible modules.11

WaveFunctionCollapse works by placing small elements into the
context of a larger whole. While these puzzle pieces go by many
different names in the wild we refer to them as tiles. A tile can be a
single pixel, a 2D image, 3D geometry, a word, or any other distinct
modular component.

Typically, tiles are either specified by an artist or extracted from
the training data. The solver does not care about the contents of
the tiles, only about the adjacencies between tiles.

3.2 Pattern Classifier
The heart of WFC are the adjacencies that describe the constraints
between patterns, used by the constraint solver to generate the
solution. Gumin’s original implementation of WFC has ways of
defining patterns: a SimpleTileModel that specifies adjacencies
between individual tiles by hand and an OverlappingModel that
infers the relationships between tiles in their local contexts. Other
models are possible: for example, Bad North [31] learns which mod-
ules can be adjacent by comparing the vertices at the edges of the
3D model and looking for matching profiles in the shared plane.

With this learning step, the OverlappingModel operates on
what it refers to as patterns. A pattern is a tile plus the context of its
surrounding adjacencies, as found in the training data. These are
usually N ×N regions of tiles (where N is typically 2 or 3, as larger
values need more training data and computing resources). The clas-
sifier reduces pertinent details about the surrounding context into a
single value. By operating on patterns rather than directly on tiles,
the solver can make use of the implied higher-order relationships
that are learned from the training data.

The OverlappingModel also uses reflection and symmetry to
augment the training data. Readers with a machine learning back-
ground will recognize this as a data augmentation strategy [1, p.
138-142]. This can be configured for the training since some in-
put images, such as a flower viewed from the side, have a strong
directionality.

In Gumin’s implementation of WaveFunctionCollapse, the pat-
tern classifier is a relatively simple 1:1 mapping of patterns learned
from the training data. Other learning methods are possible: for
example, grouping semantically similar tiles via k-means. Or we can
imagine a deep convolutional neural network being used to map
as-yet unseen tile configurations into the existing pattern catalog
so long as they were perceptually similar enough.

Pattern classification need not be a strictly local operation. If we
wanted to generate dungeon levels for a roguelike game, we may
be particularly interested to note which treasure chests are easily
reachable by the player versus not. Or in platformer level generation

8https://twitter.com/OskSta/status/784847588893814785
9https://twitter.com/MattRix/status/872674537799913472
10https://github.com/mewo2/oisin
11A conceptually simpler way to implement multi-tile elements is to give the different
parts the constraint that the only allowed neighbor in the relevant edge is another
part of the multi-tile module.

https://twitter.com/OskSta/status/784847588893814785
https://twitter.com/MattRix/status/872674537799913472
https://github.com/mewo2/oisin

Addressing the Fundamental Tension of PCGML with Discriminative Learning FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

this could distinguish rewards placed on the player’s default path
(as a guide) or off the path (as an enticement to explore). In the
future, we imagine the contextual information used in the pattern
classifier to come from many different sources. In the texture-by-
numbers application of image analogies [12], the artist hand-paints
an additional input image to guide the interpretation of the source
image and the generation of the target image in another example-
driven image generator. In Snodgrass’ hierarchical approach to
tile-based map generation [28], a lower-resolution context map is
generated automatically using clustering of tile patterns.

3.3 Patterns and Adjacency
Gumin’s WFC operates not on the tile constraints, but rather on the
constraints between patterns (Fig. 2). This is a generalization of the
adjacencies between individual tiles: the pattern classifier captures
additional adjacency information about the local space, similar to
an image filter kernel or the convolutions used in image processing
and CNNs. In effect, each tile is treated as the tile-plus-its-context:
we prefer some adjacencies, such as placing a flower in a flower-
pot. Other adjacencies are non-preferred: the flower should not be
growing in the middle of a carpet. In Gumin’s WFC implementa-
tion adjacencies are stored as a (usually sparse) multidimensional
matrix, with dimensions of patterns × patterns × directions .12

We can characterize the method used to learn the adjacency
legality as Most General Generalization (MGG), the inverse of
classic Least General Generalization (LGG) inductive inference
technique [21]. Gumin’s implementation simply allows any tile-
compatible overlapping patterns to be placed adjacent to one an-
other, even if they were never seen adjacent in the single source
image. A side effect of this is that any pattern adjacencies seen
in the source image (which are tile-compatible by construction)
must be considered valid for the generator to use later. While MGG
might appear as simple parsing and tallying, something too sim-
ple to be considered as machine learning, it is useful to compare
this approach with other classic machine learning techniques like
Naive Bayes [22, Chap. 20]. Naive Bayes classifiers are trained with
no more sophistication than tallying how often each feature was
associated with each class.

3.4 Using Multiple Sources of Training Data
The art of constructing the single source image for Gumin’s WFC
often involves some careful design to include all of the patterns
that are preferred and none that are non-preferred. By allowing
for multiple positive and negative examples and using a slightly
altered learning strategy, we show how this meticulous work can
be replaced with a conversation that elaborates on past examples.

While many WFC implementations use a single image for train-
ing data, this is an interface detail rather than an intrinsic limitation
of the algorithm. Using multiple images allows for discontinuities in
the training data, which simplifies the expression of some complex
relationships. Equally, since the adjacencies between patterns are
just a set of tuples13 we can also use negative examples (at the cost

12Constraint solvers that are not optimized for grids of constraints can, instead, use a
set of the allowed adjacencies to specify the constraints. This list of tuples is isomorphic
with the pattern matrix and is more convenient for adding or subtracting adjacencies
from the allowed set.
13or a sparse matrix

↔

↔/
Figure 2: An example of a pattern overlap, with a [0,1] off-
set. The top pair of patterns is a legal overlap, because of the
valid intersection. The bottom pair is not a legal overlap, be-
cause the striped blue tile and the solid green tile conflict.

of increased interface complexity) that remove adjacencies from
the allowed set.

One of the reasons thatWFCwas rapidly adopted was that artists
could create complex constraints by painting a picture. Complicat-
ing the interface removes some of this advantage. However, other
equally approachable ways to specify constraints have already been
explored—for example, Bad North [31] automatically detects align-
ment between the 3D geometry of neighboring tiles.

Gumin’s pattern classifier function implicitly captures the rela-
tionships between patterns in the training data. The first and most
absolute distinction is between legal and illegal overlaps: because
the patterns in the OverlappingModel need to be able to be placed
on top of each other without contradictions, some patterns will
never be legal neighbors: if one 3 × 3 pattern has a blue center tile,
while another 3×3 pattern has a green right tile, the green-right-tile
pattern can never be legally placed to the left of the blue-center-tile
pattern (Fig. 2).

Gumin’s MGG learning strategy is hardly the only option possi-
ble even using the default pattern classifier. A LGG learning strategy
would say to only allow those adjacencies explicitly demonstrated
in the source image. However, this highly-constrained alternative
might not allow any new output to be constructed that was not
an exact copy of the source image. Likely, the ideal amount of
generalization falls somewhere between these extremes.

In a discriminative learning setup, we might consider all adja-
cencies explicitly demonstrated in positive example images to be
therefore positive examples for the learned adjacency relation. Like-
wise, a negative example image needs to demonstrate at least one
adjacency that would be considered invalid by the learned relation.
We refer to the artist’s intended set of allowed relations the pre-
ferred set. Artists can attempt to adjust the legal set to match the
preferred set, but this requires a combination of technical reasoning
and trial-and-error iteration.

This is a limitation of the learning strategy, but not the WFC
algorithm itself. The output of the agrees() validity function in
Gumin’s implementation just checks if two patterns can legally
overlap, but any arbitrary adjacency validity function can be substi-
tuted here. As long as the validity function can be computed over
all pairs of patterns, it can act as the whitelist for the constraint
domains without changing the WFC solver itself.

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Isaac Karth and Adam M. Smith

3.5 Additional Pre-Solving Constraints
While most uses of WFC to date have encoded all information about
the long-range constraints in the training image data, an implemen-
tation with a more specific application in mind has the opportunity
to include additional constraints. For example, including a reacha-
bility constraint in a level generator (so that there is a path to all
the rooms in the level) can be implemented as a global constraint.

The most common use of additional constraints in the wild is to
pre-seed the solver with partial solutions. For example, the Flowers
example is pre-seeded with the lowest row limited to patterns that
include the brown soil pixels. Similarly, the Caves of Qud level
generator uses WFC as part of a pipeline, with additional details
added in the empty spaces between the walls that WFC adds. One
useful side-effect of this is that WFC can complete partial solutions.
When used as part of a mixed-initiative generator, this means that
the user can draw a partial solution (such as the main path through
a level) and have the generator fill in the rest of the space with
relevant and contextual content.

3.6 Solver
The adjacency data is sent to the constraint solver. Only the con-
straint data itself is needed: the list of constraints is sufficient. The
constraint solver can be implemented as Gumin’s stochastic obser-
vation/propagation solver; an ASP solver like Clingo14; a solver that
uses a constraint modeling language, such as MiniZinc15 and so on.
Though it is not the focus of the present paper, the properties of
the Solver can vary. Most commonly this takes the form of different
heuristics or the addition of backtracking, which is most applicable
for tile sets that greatly depart from the properties of the original
examples (small N, adjacencies that are nether too constrained or
too open). With Gumin’s parameters, the long-range constraint
propagation in WFC is more important for its high success rate
without backtracking, rather than the heuristic used [14].

3.7 Rendering
The final step of WFC is an inversion of the pattern classification:
translating the grid of selected patterns back into a grid of tiles (and
tiles into pixels). Interesting animations showing the progress of
generation in WFC result from blending the results of the pattern
renderer for all patterns that might yet still be placed at a loca-
tion. Animations of these visualizations over time attracted several
technical artists (and the present authors) to learn more about WFC.

Generalizing the role of the pattern classifier, we can imagine
other functions which decide how to represent a local patch of
pattern placements. Again, we can imagine the use of a deep con-
volutional neural network (CNN) to map a small grid of pattern
identifier integers into an rich display in the output. Although
the pattern renderer’s input datatype is fixed, the output can be
whatever artist-visible datatype was used as input to the pattern
classifier (whether that be image pixels, game object identifiers, or
a parameter vector for a downstream content generator).

If additional annotation layers are used in the source images
(as in the texture-by-numbers application mentioned above, the

14https://github.com/potassco/clingo
15https://www.minizinc.org/

navigability criteria in Bad North,16 or the player path data present
in some VGLC data), it is reasonable to expect that the output of the
generator could also have these annotation layers. For platformer
level generation, the system could output not only a tile-based map
design, but also a representation of which parts of the map player
can actually reach. Likewise, if the tiles are more complex than
static images, the rendering function can output things other than
the final image. For example, a level generator might have each tile
represent a room generator rather than the final level geometry, and
the rendering output would be the parameter data for the calls to
the room generators.

3.8 Variation in Implementations
Each of the above steps can be replaced. The many implementations
of WFC in the wild frequently vary the features that each step uses:
for example, Bad North doesn’t use patterns to learn tile adjacency,
instead relying on matching geometric profiles of 3D models.

To prototype a variation of WFC supporting an alternate pat-
tern classifier, pattern renderer, and adjacency validity function,
we initially developed a surrogate implementation of WFC in the
MiniZinc constraint programming language. Later, we integrated
the specific ability to generate with a customized pattern adjacency
whitelist into a direct Python-language clone of Gumin’s original
WFC algorithm.

4 SETTING UP DISCRIMINATIVE LEARNING
As discussed above, the original approach in WFC is to define the
adjacency validity function with the most permissive possible way,
using the every possible legal adjacency as the valid set. Among
other drawbacks, this requires careful curation of the patterns so
that every adjacency in the legal set is acceptable. While allow-
ing very expressive results from a single very small source image,
there are many preferred sets that are difficult to express in this
manner. However, this is just one of the many possible strategies.
An anomaly-detection strategy, such as a one-class Support Vec-
tor Machine [19], might allow the set of valid adjacencies to more
closely approximate the ideal preferred set, allowing the artist to
use patterns with a much larger legal adjacency set.

In this section, we consider the presence of possible negative
examples. By removing adjacency pairs that the artist explicitly
flagged as undesirable, we can more precisely determine the valid
set. By default, WFC uses all of the legal adjacencies, but the
preferred-valid set can be adjusted to include more or less of the
legal set, with corresponding effects for the generation.

4.1 Machine Learning Setup
In addition to the single positive source image used by the original
WFC, we introduce the possibility of using more source images.
Some of these are additional positive examples: it can be easier to
express new adjacencies while avoiding unwanted ones by adding
a completely separate positive example. In the positive examples,
every adjacency is considered to be valid, as usual. In contrast,
sometimes it is easier to specify just the negative adjacencies to be
removed from the preferred set. Note that these additional example
images do not need to be equal in size. In fact, a tiny negative
16https://twitter.com/OskSta/status/917405214638006273

https://github.com/potassco/clingo
https://www.minizinc.org/
https://twitter.com/OskSta/status/917405214638006273

Addressing the Fundamental Tension of PCGML with Discriminative Learning FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

example showing just the undesirable pairing lets an artist carve
out one bad location in an otherwise satisfactory design.

Finally, we have the validity function: a function that takes two
patterns (plus how they are related in space, e.g. up/down/left/right)
and outputs a Boolean evaluation of whether or not their adjacency
is valid. In the original WFC, this is simply an overlapping test:
given this offset, are there any conflicts in the intersection of the
two patterns? However, as suggested above, there are more sophis-
ticated validity functions that also produce viable results.

4.2 Human Artist Setup
In our mixed-initiative training approach, we expect the artist to
provide at least one positive example to start the process. The
image should demonstrate the local tiles that might be used by
the generator, but it does not need to demonstrate all preferred-
valid adjacencies. Note that providing one example is the typical
workflow for WFC (unmodified, Gumin’s code only accepts one
example). However, instead of expecting the artist to continue to
iterate by changing this one example, which can quickly grow
complex, the artist can isolate each individual contribution.

Initially, we set the whitelist of valid adjacencies to be fully
permissive (MGG), covering the legal adjacencies of the known
patterns. From this, we generate a small portfolio of outputs to
sample the current design space of the generator. Even a single
work sample is often enough to spur the next round of interaction.
The artist reviews the portfolio to find problems. They can add one
or more generated outputs to the negative example set directly,
crop an example to make a more focused negative example, or
hand-create a clarifying example. If additional positive examples
are desired to increase variety, those can also be added (although
they may immediately prompt the need for negative examples to
address over-generalization).

With the new batch of source images, in a trivial amount of time
we retrain each of the learned functions: the pattern classifier, the
adjacency validity function, and the pattern renderer. The update
pattern classifier defines the space of patterns that might be placed
by the generator. The newly-learned validity function defines the
updated whitelist used in the constraints. The updated pattern
renderer might even display existing pattern grids in a new way. As
before, we sample a portfolio. The artist repeats the process until
they are satisfied with the work samples. The result is a generative
system with a design space that has been sculpted to the artist’s
requirements, all without the artist needing to understand or alter
any unfamiliar machine learning algorithms.

5 WORKED EXAMPLE
In this section we walk through an example run of the conversa-
tional interaction an artist has with WFC when using a discrimi-
native learning setup. The conversation takes place over several
iterations that are visually represented in Fig. 3. All outputs shown
were generated by executing a minimally modified WFC imple-
mentation. The only alterations are adding patterns from multiple
images paired with removing items from the adjacency whitelist.
The resulting pattern grids are rendered with the pattern renderer.

In this running example, we make use of a refinement to the
MGG strategy used in Gumin’s implementation. Rather than simply

allowing all patterns which agree on their overlapping tiles, we
allow all such patterns except those taken from negative examples.
Indeed, this is still the most general generalization possible under
the extra constraints. Working through the conversation, our artist
begins Iteration 1 with the algorithm by supplying a single positive
example. Here we use the Flowers example taken from Gumin’s
public repository. MGG learns the legality relations exactly like the
original WFC. Using the generator to produce work sample, the
artist decides that the image needs more colorful flowers.

In Iteration 2, the artist augments the positive image set with
a second image, having repainted the flowers to be red. Adding
additional patterns to Gumin’s WFC required only minimal code
changes. In the resulting work sample, now both red and yellow
flowers are seen (new patterns were made available to the genera-
tor). However, the artist is still wants more flower variety.

Rather than copy-pasting the original tiles again, this time the
artist creates a number of smaller samples that focus exactly on
what they want to add to the composition. These extra tiny exam-
ples might throw off statistics in a generatively trained model. In
the work sample for Iteration 3, the new flowers are present but
a surprising new phenomenon arises. This possibility of floating
stems results from the particulars of WFC’s default pattern clas-
sifier and adjacency relation function learning. The artist is not
concerned with these implementation details and wishes simply to
fix the problem with additional examples.

By selecting and cropping a 3× 4 region of the last work sample,
the artist creates the focused negative example for use in Iteration
4. MGG, now with the extra constraint from the negative example,
no longer considers floating stems to be a possibility despite the
fact that this pattern can be identified in the input by the pattern
classifier. The work sample is now free from obvious flaws.

Having previously only considered very small training examples,
the artist notes a particular feature of the larger generated output.
The ground appears uninterestingly flat. In Iteration 5, the artist
provides a small positive example of sloped hills, hoping the gen-
erator will invent a rolling landscape. However, the work sample
for this iteration suggests that the generator has not picked up the
generality of the idea from the single tiny example—it only knows
how to build continuous ramps without any flowers.

In Iteration 6, a few more positive examples show that stems can
be placed on hills and that the bumps of hills can be isolated (not
always part of larger ramps). However, in rare circumstances the
generator will now place stems underground. This would not have
been spotted without examining many possible outputs, highlight-
ing the importance of a tool that allows the artist to give feedback
on more than one example output.

Finally, in Iteration 7, the artist is able to get the look they pre-
ferred. Adding negative examples to take care of the edge cases
is easy and can be done without adjusting the earlier source im-
ages. Testing shows that the generator is reliably producing usable
images. Because of the iterations, the artist now has enough trust
in the generator to allow it to perform future generation tasks
without supervision. The learned pattern classifier function, pat-
tern renderer function, and adjacency legality function compactly
summarize the learning from the interaction with the artist.

In this worked example, every new training example added be-
yond the first is a direct response to something observed in (or

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Isaac Karth and Adam M. Smith

Original, single example image:
only generates yellow flowers
Artist wants more variety, adds
red flowers

No longer flat, but flowers aren’t
growing on top of the hills
Artist replaces hill image with
more targeted hill images.

A rare side-effect causes under-
ground stems to grow
Artist adds negative examples,
forbidding those adjacencies

Flowers now grow on top of
gentle rolling hills.
Artist trusts generator, will now
allow it to act autonomously

Now it generates both red and
yellow flowers
Artist wants more variety, adds
more flowers, but only blossoms
Stems aren’t anchored, flowers
are floating in the sky
Artist adds a negative example
to forbid floating stems

Many varieties of flowers bloom.

Artist thinks it looks too flat, adds
hills.

Positive One Output SampleNegative

1

3
2

4

6
7

5

Figure 3: A worked example of the mixed-initiative conversational teaching model process. The artist observes the results of
each step (top black text) and makes a change for the next step (lower blue text). Each step adds either positive or negative
examples. The source images for each output can be seen in the columns on the left, with a representative output image to
the right.

observed to be missing from) concrete images produced by the pre-
vious generator. Many demonstrate patterns that are not what the
generator should produce in the future, even if it is not realized that
this was the case earlier. Instead of iterating to produce a carefully
curated set of 100% valid examples, we make progress by adding
focused clarifications.

6 CONCLUSION
The fundamental tension in PCGML is that the effort to craft enough
training data for effective machine learning might undermine the
motivation to use PCGML in the first place. This makes many ma-
chine learning approaches impractical: even when the design goal
is flexibility (rather than nominally infinite content) the immense
amount of training data required can be daunting.

However, existing approaches to single-example PCG such as
WaveFunctionCollapse suggests that small-training-data generators

are possible. When we combine them with a discriminative learn-
ing strategy, we can leverage the usefulness of focused negative
examples, even just example fragments. As our worked example of
the conversational teaching model shows, an artist can intuitively
make targeted changes without being overly concerned about main-
taining a representative distribution or disturbing earlier, carefully
planned patterns just to fix a rare edge case.

Combining PCGML with mixed-initiative design assistance tools
can enable artists to sculpt a generator’s design space. Rather than
building just one high-quality artifact, the artist can train a gen-
erator through iterative steps to the point where they trust it for
autonomous generation.

REFERENCES
[1] Francois Chollet. 2017. Deep Learning with Python (1st ed.). Manning Publications

Co., Greenwich, CT, USA.
[2] Alexei A. Efros and William T. Freeman. 2001. Image Quilting for Texture

Synthesis and Transfer. In Proceedings of the 28th Annual Conference on Computer

Addressing the Fundamental Tension of PCGML with Discriminative Learning FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

Graphics and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA,
341–346. DOI:http://dx.doi.org/10.1145/383259.383296

[3] Alexei A Efros and Thomas K Leung. 1999. Texture synthesis by non-parametric
sampling. In Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, Vol. 2. IEEE, IEEE Computer Society, 1999, 1033–1038.

[4] Mathieu Fehr and Nathanaël Courant. 2018. fast-wfc. https://github.com/math-
fehr/fast-wfc, GitHub repository (2018).

[5] David Donovan Garber. 1981. Computational Models for Texture Analysis and
Texture Synthesis. Ph.D. Dissertation. University of Southern California, Los
Angeles, CA, USA. AAI0551115.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2014.
Clingo = ASP + Control: Preliminary Report. CoRR abs/1405.3694 (2014).

[7] Jason Grinblat and Charles B. Bucklew. 2010. Caves of Qud. (2010).
[8] Maxim Gumin. 2017. WaveFunctionCollapse Readme.md. (18 May 2017). Re-

trieved May 20, 2017 from https://github.com/mxgmn/WaveFunctionCollapse/
blob/master/README.md

[9] Matthew Guzdial, Nicholas Liao, and Mark Riedl. 2018. Co-Creative Level Design
via Machine Learning. In The 5th Experimental AI in Games Workshop (EXAG).
http://ceur-ws.org/Vol-2282/EXAG_126.pdf

[10] Matthew Guzdial, Joshua Reno, Jonathan Chen, Gillian Smith, and Mark Riedl.
2018. Explainable PCGML via Game Design Patterns. In The 5th Experimental AI
in Games Workshop (EXAG). http://ceur-ws.org/Vol-2282/EXAG_107.pdf

[11] Paul Francis Harrison. 2006. Image Texture Tools: Texture Synthesis, Texture
Transfer, and Plausible Restoration. Monash University. 95–117 pages.

[12] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H
Salesin. 2001. Image analogies. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM, 327–340.

[13] Rishabh Jain, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius. 2016.
Autoencoders for level generation, repair, and recognition. In Proceedings of the
ICCC Workshop on Computational Creativity and Games.

[14] Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is Constraint
Solving in the Wild. In Proceedings of the 12th International Conference on the
Foundations of Digital Games (FDG ’17). ACM, New York, NY, USA, Article 68,
10 pages. DOI:http://dx.doi.org/10.1145/3102071.3110566

[15] Antonios Liapis, Gillian Smith, and Noor Shaker. 2016. Mixed-initiative content
creation. In Procedural Content Generation in Games: A Textbook and an Overview
of Current Research, Noor Shaker, Julian Togelius, and Mark J. Nelson (Eds.).
Springer, 195–216.

[16] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-aided game level authoring.. In FDG. 213–220.

[17] A. Liapis, G. N. Yannakakis, and J. Togelius. 2014. Designer modeling for Sentient
Sketchbook. In 2014 IEEE Conference on Computational Intelligence and Games.
1–8. DOI:http://dx.doi.org/10.1109/CIG.2014.6932873

[18] P. Merrell and D. Manocha. 2011. Model Synthesis: A General Procedural Model-
ing Algorithm. IEEE Transactions on Visualization and Computer Graphics 17, 6
(June 2011), 715–728. DOI:http://dx.doi.org/10.1109/TVCG.2010.112

[19] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. 2001. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12, 2
(Mar 2001), 181–201. DOI:http://dx.doi.org/10.1109/72.914517

[20] Joseph Osborn, Adam Summerville, and Michael Mateas. 2017. Automatic Map-
ping of NES GameswithMappy. In Proceedings of the 12th International Conference
on the Foundations of Digital Games (FDG ’17). ACM, New York, NY, USA, Article
78, 9 pages. DOI:http://dx.doi.org/10.1145/3102071.3110576

[21] Gordon D Plotkin. 1971. A further note on inductive generalization. Machine
intelligence 6, 101-124 (1971).

[22] Stuart J. Russell and Peter Norvig. 2016. Artificial Intelligence: A Modern Approach
(3 ed.). Pearson Education.

[23] Dominik Sacha, Michael Sedlmair, Leishi Zhang, John A. Lee, Jaakko Peltonen,
Daniel Weiskopf, Stephen C. North, and Daniel A. Keim. 2017. What you see is
what you can change: Human-centered machine learning by interactive visual-
ization. Neurocomputing 268 (2017), 164 – 175. DOI:http://dx.doi.org/10.1016/j.
neucom.2017.01.105 Advances in artificial neural networks, machine learning
and computational intelligence.

[24] Anurag Sarkar and Seth Cooper. 2018. Blending Levels from Different Games
using LSTMs. In The 5th Experimental AI in Games Workshop (EXAG). http://ceur-
ws.org/Vol-2282/EXAG_125.pdf

[25] R. M. Smelik, T. Tutenel, K. J. De Kraker, and R. Bidarra. 2011. Semantic 3D Media
and Content: A Declarative Approach to Procedural Modeling of Virtual Worlds.
Comput. Graph. 35, 2 (April 2011), 352–363. DOI:http://dx.doi.org/10.1016/j.cag.
2010.11.011

[26] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive plan-
ning and constraint solving for mixed-initiative level design. IEEE Transactions
on Computational Intelligence and AI in Games 3, 3 (2011), 201–215.

[27] Sam Snodgrass. 2018. Markov Models for Procedural Content Generation. Ph.D.
Dissertation. Drexel University.

[28] Sam Snodgrass and Santiago Ontañón. 2015. A hierarchical MDMC approach to
2D video game map generation. In Eleventh Artificial Intelligence and Interactive
Digital Entertainment Conference.

[29] Sam Snodgrass and Santiago Ontañón. 2016. An Approach to Domain Transfer in
Procedural Content Generation of Two-Dimensional Videogame Levels. (2016).
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13985

[30] Sam Snodgrass, Adam Summerville, and Santiago Ontañón. 2017. Studying the
Effects of Training Data on Machine Learning-Based Procedural Content Gener-
ation.. In Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE-17). 122–128.

[31] Oskar Stålberg, Richard Meredith, and Martin Kvale. 2018. Bad North. (2018).
Plausible Concept.

[32] Adam Summerville andMichael Mateas. 2016. SuperMario as a String: Platformer
Level Generation Via LSTMs. CoRR abs/1603.00930 (2016). arXiv:1603.00930
http://arxiv.org/abs/1603.00930

[33] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,
Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2017. Proce-
dural Content Generation via Machine Learning (PCGML). CoRR abs/1702.00539
(2017). arXiv:1702.00539 http://arxiv.org/abs/1702.00539

[34] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santiago Onta
n’on Villar. 2016. The VGLC: The Video Game Level Corpus. Proceedings of the
7th Workshop on Procedural Content Generation (2016).

[35] Adam James Summerville, Sam Snodgrass, Michael Mateas, and Santi Ontañón
Villar. 2016. The VGLC: The Video Game Level Corpus. CoRR abs/1606.07487
(2016). arXiv:1606.07487 http://arxiv.org/abs/1606.07487

[36] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebas-
tian Risi. 2018. EvolvingMario Levels in the Latent Space of a Deep Convolutional
Generative Adversarial Network. arXiv preprint arXiv:1805.00728 (2018).

[37] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam M. Smith, and
Sebastian Risi. 2018. Evolving Mario Levels in the Latent Space of a Deep Con-
volutional Generative Adversarial Network. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2018). ACM, New York, NY, USA,
8. DOI:http://dx.doi.org/10.1145/3205455.3205517

http://dx.doi.org/10.1145/383259.383296
https://github.com/math-fehr/fast-wfc
https://github.com/math-fehr/fast-wfc
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
http://ceur-ws.org/Vol-2282/EXAG_126.pdf
http://ceur-ws.org/Vol-2282/EXAG_107.pdf
http://dx.doi.org/10.1145/3102071.3110566
http://dx.doi.org/10.1109/CIG.2014.6932873
http://dx.doi.org/10.1109/TVCG.2010.112
http://dx.doi.org/10.1109/72.914517
http://dx.doi.org/10.1145/3102071.3110576
http://dx.doi.org/10.1016/j.neucom.2017.01.105
http://dx.doi.org/10.1016/j.neucom.2017.01.105
http://ceur-ws.org/Vol-2282/EXAG_125.pdf
http://ceur-ws.org/Vol-2282/EXAG_125.pdf
http://dx.doi.org/10.1016/j.cag.2010.11.011
http://dx.doi.org/10.1016/j.cag.2010.11.011
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13985
http://arxiv.org/abs/1603.00930
http://arxiv.org/abs/1603.00930
http://arxiv.org/abs/1702.00539
http://arxiv.org/abs/1702.00539
http://arxiv.org/abs/1606.07487
http://arxiv.org/abs/1606.07487
http://dx.doi.org/10.1145/3205455.3205517

	Abstract
	1 Introduction
	2 Background
	2.1 WaveFunctionCollapse
	2.2 PCGML
	2.3 Mixed-Initiative Design Tools

	3 Characterizing WFC as PCGML
	3.1 Tiles
	3.2 Pattern Classifier
	3.3 Patterns and Adjacency
	3.4 Using Multiple Sources of Training Data
	3.5 Additional Pre-Solving Constraints
	3.6 Solver
	3.7 Rendering
	3.8 Variation in Implementations

	4 Setting Up Discriminative Learning
	4.1 Machine Learning Setup
	4.2 Human Artist Setup

	5 Worked Example
	6 Conclusion
	References

